This dimension varies to suit Proposed Catch-pit with trapProposed 300mm U-Channel Proposed UC with C.I cover February 2023 Boundary of Catchment Area 🔭 🔭 Flat Grassland ## Site Area(about): 3,159m² ## Connection details of S1 and S2 Proposed outfall between CP1/CP2, S1/S2 and existing watercourse Catch-pit Proposed ## 1:750 (A3) Drainage Proposal Lot 788(part), 790(part), 793, 794 & 801 RP in D.D. 381 and Adjoining Government Land Tuen Mun, New Territories (REFER TO CEDD'S STANDARD DWG. C2406/1) ## Goldrich Planners & Surveyors Ltd. Plan 5 (P 22015) | For Catchment Area A | | Ref. | |--|---|--------------------------| | Area,
Average slope,
Distance on the line of natural flow, | | * | | Time of concentraction | $t_o = 0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (19.5) / (0.1^0.2*462^0.1)$
= 2.4 min | SDM 7.5.2 (d) | | 2 For Existing U-Channel in cate | hment area A1 | | | | From To | | | Ground level (mPD)
Invert level (mPD) | 3.87 3.87
3.70 3.39 | | | Width of u-channel, | | 1000 | | Length of u-channel,
Depth of vertical part of u-channel, | | | | | d = 330 mm
$S_f = (3.7-3.39)/46.8 = 0.007$ | | | Cross-Section Area, | $a = 0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 330$ | | | Wetted Perimeter, | $ = 0.134 \text{ m}^2 $ $ p = \pi \text{ r} + 2 \text{ d} = 3.14 \times 150 + 2 \times 330 $ | | | Hydralic radius, | = 1.131 m | ODM CO. | | nyurane radius, | R = a/p
= 0.119 m | SDM 8.2.1 | | 3 Use Manning Equation for esti | mating velocity of stormwater | | | | n = 0.016 for concrete lined channels:- | SDM Table 13 | | Allowable velocity, | $V = R^{1/6} \times (RS_f)^{1/2} / n = (0.119)^1/6 \times (0.119 \times 0.007)^1/2 / 0.016$
= 1.23 m/s | SDM Table 12 | | Time of flow, | | | | Use "Rational Method" for calc | ulation of design flow | | | Design intensity, | $i = a / (t_o + t_f + b)^c$
= 687 / (2.4+0.6+4.2)^0.42 for return period T = 50 years | SDM 4.3.2
SDM Table 3 | | | = 299 | | | Type of surface | Runoff Coefficient C Catchment Area A (m²) C x A | SDM 7.5.2 (b) | | Flat Glassland(heavy soil)
Concrete Paving | 0.25 0.0 0.0
0.95 462.0 438.9 | | | , annig | SUM = 438.9 | | | Upstream flow, | $Q_u = 0 \text{ m}^3/\text{s}$ | | | Design flow, | $Q_d = 0.278i \Sigma C_j A_j + Q_u$ where A_j is in km ² | SDM 7.5.2 (a) | | | $= 0.278 \times 299 \times 438.9 / 1000000 + 0$ $= 0.036 \text{ m}^3/\text{s}$ | NO 1 TO | | \$ | | | | Allowable flow, | $Q_a = a \times v$
= 0.134 x 1.23 | | | | $= 0.134 \times 1.23$
= 0.165 m ³ /s | | | | | E | | | > Q _d (O.K.) | * | | Reference was made to Stormwate | Drainage Manual (SDM) by DSD | | | Scale: NA | Dramage Calculation | Planners & ors Ltd. | | June 2023 | T I T A A A A A T T A A A A A A A A A A | ge 1
2015) | | 1 | →For Catchment Area B | Ref. | |---|---|------------------------------| | | Area, A = 431 m^2
Average slope, H = $0.1 \text{ m per } 100 \text{m}$
Distance on the line of natural flow, L = 24 m | | | | Time of concentraction, $t_o = 0.14465L/(H^{0.2}A^{0.1}) = 0.14465(24)/(0.1^0.2*431^0.1) = 3.0 min$ | SDM 7.5.2 (d) | | 2 | For Existing U-Channel in catchment area A1 | | | | From To | | | | Ground level (mPD) 3.87 3.87 Invert level (mPD) 3.39 3.23 | | | | Width of u-channel, $w = 300 \text{ mm}$
Length of u-channel, $L_c = 23.4 \text{ m}$
Depth of vertical part of u-channel, $d = 490 \text{ mm}$ | | | | Gradient of u-channel, $S_f = (3.39-3.23)/23.4 = 0.007$ | | | | Cross-Section Area, a = $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 490$
= 0.182 m^2 | | | | Wetted Perimeter, p = π r + 2 d = 3.14 x 150 + 2 x 490
= 1.451 m | | | = | Hydralic radius, R = a / p
= 0.126 m | SDM 8.2.1 | | 3 | Use Manning Equation for estimating velocity of stormwater | | | | Take n = 0.016 for concrete lined channels:- Allowable velocity, v = $R^{1/6}x (RS_f)^{1/2}/n = (0.126)^{1/6}x (0.126 \times 0.007)^{1/2} / 0.016$ = 1.30 m/s | SDM Table 13
SDM Table 12 | | | Time of flow, $t_f = 0.3 \text{ min}$ | | | 4 | Use "Rational Method" for calculation of design flow | | | | Design intensity, $i = a / (t_0 + t_1 + b)^c$
= 687 / (3+0.3+4.2)^0.42 for return period T = 50 years
= 295 | SDM 4.3.2
SDM Table 3 | | | Type of surfaceRunoff Coefficient CCatchment Area A (m^2) $C \times A$ Flat Glassland(heavy soil)0.250.00.0Concrete Paving0.95431.0409.5SUM = 409.5 | SDM 7.5.2 (b) | | | Upstream flow, $Q_u = 0.036 \text{ m}^3/\text{s}$ | | | | Design flow, $Q_d = 0.278i \Sigma C_j A_j + Q_u$ where A_j is in km ²
= 0.278 x 295 x 409.45 / 1000000 + 0.036
= 0.070 m ³ /s | SDM 7.5.2 (a) | | | Allowable flow, $Q_a = a \times v$
= 0.182 x 1.3 | 8 | | | = 0.236 m ³ /s | | | | > Q _d (O.K.) | a 4 | | | Reference was made to Stormwater Drainage Manual (SDM) by DSD | | | | Scale: NA Drainage Calculation Goldrich Pl
Surveyor | State (State State) | | | June 2023 Lots 793, 794 and 801 RP in D.D. 381 and Adjoining Government Land, Tuen Mun, New Territories (P220 | 2 | | | | | | | 1 For Catchment Area C | Ref. | | | |---|---|--|--|--| | , | Area, A = 407 m^2
Average slope, H = 0.1 m per 100m
Distance on the line of natural flow, L = 16.5 m | | | | | | Time of concentraction, $t_o = 0.14465 L / (H^{0.2}A^{0.1}) = 0.14465 (16.5) / (0.1^0.2*407^0.1) = 2.1 min$ | SDM 7.5.2 (d) | | | | | 2 For Existing U-Channel in catchment area A1 | | | | | | From To Ground level (mPD) 3.87 3.87 Invert level (mPD) 3.23 2.90 | | | | | | Width of u-channel, w = 300 mm
Length of u-channel, L_c = 50.1 m
Depth of vertical part of u-channel, d = 820 mm
Gradient of u-channel, S_f = 3.23-2.9)/50.1 = 0.007 | * , | | | | | Cross-Section Area, a = $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 820$
= 0.281 m^2 | | | | | | Wetted Perimeter, p = π r + 2 d = 3.14 x 150 + 2 x 820
= 2.111 m
Hydralic radius, R = a / p
= 0.133 m | SDM 8.2.1 | | | | | 3 Use Manning Equation for estimating velocity of stormwater | | | | | | Take n = 0.016 for concrete lined channels:- Allowable velocity, v = $R^{1/6}x (RS_f)^{1/2}/n = (0.133)^{1/6}x (0.133 \times 0.007)^{1/2} / 0.016$ = 1.32 m/s | SDM Table 13
SDM Table 12 | | | | I | Time of flow, $t_f = 0.6 \text{ min}$ | | | | | | 4 Use "Rational Method" for calculation of design flow | ., | | | | | Design intensity, $i = a / (t_o + t_f + b)^c$
= 687 / (2.1+0.6+4.2)^0.4; for return period T = 50 years
= 305 | SDM 4.3.2
SDM Table 3 | | | | | Type of surfaceRunoff Coefficient CCatchment Area A (m^2) $C \times A$ Flat Glassland(heavy soil) 0.25 0.0 0.0 Concrete Paving 0.95 407.0 386.7 SUM = $\boxed{386.7}$ | SDM 7.5.2 (b) | | | | | Upstream flow, $Q_u = 0.07 \text{ m}^3/\text{s}$ | | | | | | Design flow, $Q_d = 0.278i \Sigma C_j A_j + Q_u$ where A_j is in km ²
= $0.278 \times 305 \times 386.65 / 1000000 + 0.07$
= $0.103 \text{ m}^3/\text{s}$ | SDM 7.5.2 (a) | | | | | Allowable flow, $Q_a = a \times v$
= 0.281 x 1.32
= 0.372 m ³ /s | | | | | | = 0.372 m/s
> Q _d (O.K.) | 2 ~ | | | | | Reference was made to Stormwater Drainage Manual (SDM) by DSD | | | | | | Scale: NA Drainage Calculation Goldrich Plans Surveyor | | | | | | June 2023 Lots 793, 794 and 801 RP in D.D. 381 and Adjoining Government Land, Tuen Mun, New Territories (P220) | 3 | | | | | | A CONTRACTOR OF THE PARTY TH | | | | 1 | For Catchment Area D | Ref. | |---|---|--------------------------------| | | Area, A = 290 m^2
Average slope, H = $0.1 \text{ m per } 100 \text{m}$
Distance on the line of natural flow, L = 27.8 m | | | | Time of concentraction, $t_o = 0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (27.8) / (0.1^0.2*290^0.1) = 3.6 min$ | SDM 7.5.2 (d) | | 2 | For Existing U-Channel in catchment area A1 | | | | From To | | | | Ground level (mPD) 3.87 3.87 Invert level (mPD) 3.04 2.90 | -, | | | Width of u-channel, w = 300 mm | | | | Length of u-channel, $L_c = 20.7 \text{ m}$
Depth of vertical part of u-channel, $d = 820 \text{ mm}$ | | | | Gradient of u-channel, $S_i = (3.04-2.9)/20.7 = 0.007$ | | | | Cross-Section Area, a = $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 820$
= 0.281 m^2 | | | | Wetted Perimeter, p = $\pi r + 2d = 3.14 \times 150 + 2 \times 820$
= 2.111 m | | | | Hydralic radius, R = a / p
= 0.133 m | SDM 8.2.1 | | 3 | Use Manning Equation for estimating velocity of stormwater | F 10 | | | Take n = 0.016 for concrete lined channels:-
Allowable velocity, v = $R^{1/6}x (RS_t)^{1/2}/n = (0.133)^{1/6}x (0.133 \times 0.007)^{1/2}/0.016$ | SDM Table 13
SDM Table 12 | | | $= 1.34 \text{ m/s}$ Time of flow, $t_f = 0.3 \text{ min}$ | | | 4 | Use "Rational Method" for calculation of design flow | | | | Design intensity, $i = a / (t_o + t_f + b)^c$
= 687 / (3.6+0.3+4.2)^0.42 for return period T = 50 years
= 286 | SDM 4.3.2
SDM Table 3 | | | Type of surfaceRunoff Coefficient CCatchment Area A (m^2) $C \times A$ Flat Glassland(heavy soil)0.250.00.0Concrete Paving0.95290.0275.5SUM = 275.5 | SDM 7.5.2 (b) | | | Upstream flow, $Q_u = 0 \text{ m}^3/\text{s}$ | | | | Design flow, $Q_d = 0.278i \Sigma C_j A_j + Q_u$ where A_j is in km ²
= $0.278 \times 286 \times 275.5 / 1000000 + 0$
= $0.022 \text{ m}^3/\text{s}$ | SDM 7.5.2 (a) | | | Allowable flow, $Q_a = a \times v$
= 0.281 x 1.34 | | | | = 0.377 m ³ /s | | | | > Q _d (O.K.) | 3 | | | Reference was made to Stormwater Drainage Manual (SDM) by DSD | | | | Scale: NA | ich Planners &
rveyors Ltd. | | | June 2023 Lots 793, 794 and 801 RP in D.D. 381 and Adjoining Government Land, Tuen Mun, New Territories | Page 4
(P22015) | | | | | | 1 For Channel Section S1 | · | Ref. | |--|---|--| | | $A = 0 m^2$ | | | Average slope Distance on the line of natural flow | | | | 10 Secretaria de Albana | NAC AND A | | | Time of concentraction | $t_o = 0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (0) / (0.1^0.2^00.1)$
= 0.0 min | SDM 7.5.2 (d) | | 2 For Existing U-Channel in cat | chment area A1 | | | | From To | | | Ground level (mPD)
Invert level (mPD) | 3.87 3.87
2.90 2.88 | | | Width of u-channel | w = 300 mm | | | Length of u-channel | | | | Depth of vertical part of u-channel
Gradient of u-channel | | 3 1 | | Stadion of a shannon | 0, - (2.0-2.00)/2 - 0.010 | | | | a = $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 840$
= 0.287 m^2 | | | Wetted Perimeter | $p = \pi r + 2 d = 3.14 \times 150 + 2 \times 840$
= 2.151 m | | | Hydralic radius | | SDM 8.2.1 | | | = 0.134 m | | | 3 Use Manning Equation for est | | | | Take | | SDM Table 13 | | Allowable velocity | $V = R^{1/6}x (RS_f)^{1/2}/n = (0.134)^{1/6} x (0.134 x 0.01)^{1/2} / 0.016$
= 1.63 m/s | SDM Table 12 | | Time of flow | | | | 4 Use "Rational Method" for cal | culation of design flow | | | Design intensity | $i = a / (t_o + t_f + b)^c$ | SDM 4.3.2 | | 0007 34072 | = 687 / (0+0.02+4.2)^0.42 for return period T = 50 years
= 375 | SDM Table 3 | | 9 | - 373 | | | Type of surface | Runoff Coefficient C Catchment Area A (m²) C x A | SDM 7.5.2 (b) | | Flat Glassland(heavy soil)
Concrete Paving | 0.25 0.0 0.0
0.95 0.0 0.0 | | | | $SUM = \boxed{0.0}$ | 51 | | Upstream flow, | $Q_u = 0.125 \text{ m}^3/\text{s}$ | 9 | | Design flow. | $Q_d = 0.278i \Sigma C_j A_j + Q_u$ where A_j is in km ² | SDM 7.5.2 (a) | | | = 0.278 x 375 x 0 / 1000000 + 0.125 | OBM 7.0.2 (d) | | 9 | = 0.125 m ³ /s | | | Allowable flow, | $Q_a = a \times v$ | | | programme approximate to 100 feb cold | $= 0.287 \times 1.63$ | l | | 140 _ 81 41 | = 0.469 m ³ /s | | | , | > Q _d (O.K.) | | | | | | | Reference was made to Stormwater Drainage Manual (SDM) by DSD | | | | 0.1.31 | Goldrich Pla | inners & | | Scale: NA | Drainage Calculation Surveyor | system of the state stat | | June 2023 | Lots 793, 794 and 801 RP in D.D. 381 and Adjoining Government Land, Tuen Mun, New Territories (P220) | 5 | | | (1220) | -) | | 1 _. For Catchment Area E | | Ref. | | |---|--|------------------------------|--| | Area, A
Average slope, I
Distance on the line of natural flow, I | $A = 287 \text{ m}^2$
A = 0.1 m per 100 m
A = 15.8 m | | | | Time of concentraction, t | $f_0 = 0.14465 L / (H^{0.2}A^{0.1}) = 0.14465 (15.8) / (0.1^0.2*287^0.1)$
= 2.1 min | SDM 7.5.2 (d) | | | 2 For Existing U-Channel in catch | iment area A1 | 9 | | | Ground level (mPD) | From To
3.87 3.87
3.69 3.48 | 122 | | | Width of u-channel, w
Length of u-channel, L
Depth of vertical part of u-channel, of
Gradient of u-channel, S | _{-c} = 31.5 m | 5 | | | Cross-Section Area, a | $a = 0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 240$
= 0.107 m ² | | | | Wetted Perimeter, p
Hydralic radius, F | $\pi r + 2 d = 3.14 \times 150 + 2 \times 240$
= 0.951 m | SDM 8.2.1 | | | in a state of the | = 0.113 m | ODW 0.2.1 | | | 3 Use Manning Equation for estim | | | | | Take n
Allowable velocity, v | $= R^{1/6} \times (RS_1)^{1/2} / n = (0.113)^{1/6} \times (0.113 \times 0.007)^{1/2} / 0.016$ | SDM Table 13
SDM Table 12 | | | Time of flow, t _f | = 1.19 m/s
= 0.4 min | | | | 4 Use "Rational Method" for calcu | lation of design flow | | | | Design intensity, | $i = a / (t_0 + t_f + b)^c$
= 687 / (2.1+0.4+4.2)^0.42 for return period T = 50 years
= 309 | SDM 4.3.2
SDM Table 3 | | | Type of surface Flat Glassland(heavy soil) Concrete Paving | Runoff Coefficient CCatchment Area A (m^2) $C \times A$ 0.250.00.00.95287.0272.7SUM = $\boxed{272.7}$ | SDM 7.5.2 (b) | | | Upstream flow, C | $v_u = 0 \text{ m}^3/\text{s}$ | ¥8 | | | Design flow, C | $Q_d = 0.278i \Sigma C_j A_j + Q_u$ where A_j is in km ²
= 0.278 x 309 x 272.65 / 1000000 + 0
= 0.023 m ³ /s | SDM 7.5.2 (a) | | | Allowable flow, Q | $a_a = a \times v$
= 0.107 x 1.19 | | | | | = 0.128 m ³ /s | , a | | | | > Q _d (O.K.) | | | | Reference was made to Stormwater Drainage Manual (SDM) by DSD | | | | | Scale: NA | Trainage Calculation | Planners &
yors Ltd. | | | June 2023 | The Art St. Art St. Co. Co | age 6
22015) | | | 1 _. For Catchment Area F | | Ref. | |--|--|--------------------------| | Area
Average slope
Distance on the line of natural flow | , H = 0.1 m per 100m | - | | Time of concentraction | $t_o = 0.14465L / (H^{0.2}A^{0.1}) = 0.14465 (9) / (0.1^0.2*605^0.1)$
= 1.1 min | SDM 7.5.2 (d) | | 2 For Existing U-Channel in cat | chment area A1 | 9 | | - | From To | | | Ground level (mPD) Invert level (mPD) | 3.87 3.87
3.48 2.90 | | | Width of u-channe | , w = 300 mm | ar. | | Length of u-channe | $L_{c} = 88.3 \text{ m}$ | | | Depth of vertical part of u-channe | | | | Gradient of u-channe | , S _f = (3.48-2.9)/88.3 = 0.007 | | | Cross-Section Area | , a = $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 820$
= 0.281 m^2 |) | | Wetted Perimeter | $p = \pi r + 2 d = 3.14 \times 150 + 2 \times 820$ | | | Hydralic radius | = 2.111 m
.R = a/p | ODMAAA | | Tryurano radius | R = a/p
= 0.133 m | SDM 8.2.1 | | 3 Use Manning Equation for est | | | | Take | | SDM Table 13 | | Allowable velocity | Y W. Street, and the a | SDM Table 12 | | Time of flow | = 1.32 m/s
$t_f =$ 1.1 min | | | 4 Use "Rational Method" for cal | culation of design flow | | | Design intensity | $i = a / (t_o + t_f + b)^c$
= 687 / (1.1+1.1+4.2)^0.42 for return period T = 50 years
= 315 | SDM 4.3.2
SDM Table 3 | | Type of surface
Flat Glassland(heavy soil)
Concrete Paving | Runoff Coefficient C Catchment Area A (m^2) C x A 0.25 0.0 0.0 0.95 605.0 574.8 SUM = 574.8 | SDM 7.5.2 (b) | | Upstream flow | $Q_u = 0.023 \text{ m}^3/\text{s}$ | | | Design flow | $Q_d = 0.278i \Sigma C_j A_j + Q_u$ where A_j is in km ²
= 0.278 x 315 x 574.75 / 1000000 + 0.023
= 0.073 m ³ /s | SDM 7.5.2 (a) | | Allowable flow | $Q_a = a \times v$
= 0.281 × 1.32 | , | | | = 0.372 m ³ /s | 9 | | | > Q _d (O.K.) | 8 * | | Reference was made to Stormwate | er Drainage Manual (SDM) by DSD | | | Scale: NA | Drainage Calculation Goldrich Pla Surveyor | | | June 2023 | Lots 793, 794 and 801 RP in D.D. 381 and Adjoining Government Land, Tuen Mun, New Territories (P220) | 7 | | 1 | For Channel Section S2 | Ref. | |----------|--|--| | | Area, A = 0 m^2
Average slope, H = $0.1 \text{ m per } 100 \text{m}$
Distance on the line of natural flow, L = 0 m | | | | Time of concentraction, $t_o = 0.14465L/(H^{0.2}A^{0.1}) = 0.14465(0)/(0.1^0.2^00.1)$
= 0.0 min | SDM 7.5.2 (d) | | 2 | For Existing U-Channel in catchment area A1 | | | | From To | | |) (4 | Ground level (mPD) 3.87 3.87 Invert level (mPD) 2.90 2.88 | . " | | | Width of u-channel, $w = 300 \text{ mm}$ | | | | Length of u-channel, $L_c = 2 \text{ m}$ | 24 | | | Depth of vertical part of u-channel, d = 840 mm | = | | | Gradient of u-channel, $S_f = (2.9-2.88)/2 = 0.010$ | | | | Cross-Section Area, a = $0.5 \pi r^2 + w d = 0.5 \times 3.14 \times 150^2 + 300 \times 840$
= 0.287 m^2 | | | | Wetted Perimeter, p = $\pi r + 2 d$ = 3.14 x 150 + 2 x 840 | | | | = 2.151 m
Hydralic radius, R = a / p | opuse. | | | = 0.134 m | SDM 8.2.1 | | 3 | Use Manning Equation for estimating velocity of stormwater | | | J | ose Marining Equation for estimating velocity of stormwater | | | | Take n = 0.016 for concrete lined channels:- | SDM Table 13 | | | Allowable velocity, $v = R^{1/6}x (RS_f)^{1/2}/n = (0.134)^1/6 \times (0.134 \times 0.01)^1/2 / 0.016$
= 1.63 m/s | SDM Table 12 | | | Time of flow, $t_f = 0.02 \text{ min}$ | | | 4 | Use "Rational Method" for calculation of design flow | | | | Design intensity, $i = a / (t_o + t_f + b)^c$
= 687 / (0+0.02+4.2)^0.42 for return period T = 50 years
= 375 | SDM 4.3.2
SDM Table 3 | | | Type of surface Runoff Coefficient C Catchment Area A (m²) C x A | ODM 7.50 (L) | | | Type of surface Runoff Coefficient C Catchment Area A (m²) C x A Flat Glassland(heavy soil) 0.25 0.0 0.0 | SDM 7.5.2 (b) | | | Concrete Paving 0.95 0.0 0.0 | | | | $SUM = \boxed{0.0}$ | | | | Upstream flow, $Q_u = 0.073 \text{ m}^3/\text{s}$ | | | | Design flow, $Q_d = 0.278i \Sigma C_j A_j + Q_u$ where A_j is in km ²
= 0.278 x 375 x 0 / 1000000 + 0.073
= 0.073 m ³ /s | SDM 7.5.2 (a) | | | Allowable flow, $Q_a = a \times v$ | 8 | | | $= 0.287 \times 1.63$ | | | | = 0.469 m ³ /s | | | | > Q _d (O.K.) | + 3 | | | Reference was made to Stormwater Drainage Manual (SDM) by DSD | | | | Scale: NA Drainage Calculation Goldrich Pl
Surveyor | PRODUCTION CONTRACTOR OF THE PRODUCTION P | | | June 2023 Lots 793, 794 and 801 RP in D.D. 381 and Adjoining Government Land, Tuen Mun, New Territories (P220 | 8 | | renname. | | / | | | | | | | * | |